
Python Recursive Functions

Pankaj Chouhan
www.codeswithpankaj.com

Recursion is a fundamental programming concept where a function calls itself
to solve smaller instances of a problem. In Python, recursive functions are
commonly used to solve problems that can be broken down into smaller,
similar subproblems, such as factorial calculation, Fibonacci series, and tree
traversals.

Pankaj Chouhan
www.codeswithpankaj.com

What is Recursion ?
Recursion is a process where a
function calls itself. It continues
until a stopping condition
(called the base case) is met.

Base case

Recursive case

Pankaj Chouhan
www.codeswithpankaj.com

The condition that
stops the recursion.

The condition that
stops the recursion.

How Does a Recursive
Function Work ?
When a function calls itself, each call is stored in the
call stack. The function keeps calling itself until it
reaches the base case. Then, the function starts
returning values and unwinding back through the call
stack.

Example

def recurse():
 print("Calling recurse()")
 recurse()
 # Recursive call

recurse()

The function recurse() prints "Calling
recurse()".
Then, it calls itself, leading to an infinite
recursion (no base case).
This will eventually cause a RecursionError
because Python has a recursion limit.Pankaj Chouhan

www.codeswithpankaj.com

Calling recurse()
Calling recurse()
Calling recurse()
...
RecursionError: maximum recursion depth exceeded

output

recurse(5)

recurse(4)

recurse(3)

recurse(2)

recurse(1)

recurse(0)

Example

Pankaj Chouhan
www.codeswithpankaj.com

To prevent infinite recursion, always include a
base case like this :

def recurse(n):
 if n == 0: # Base case to stop recursion
 return
 print(f"Calling recurse({n})") # Print
current call
 recurse(n - 1) # Recursive call

recurse(5) # Starts recursion

prints "Calling recurse(5)"

prints "Calling recurse(4)"

prints "Calling recurse(3)"

prints "Calling recurse(2)"

prints "Calling recurse(1)"

(Base Case) Stops recursion and returns

Calling recurse(5)
Calling recurse(4)
Calling recurse(3)
Calling recurse(2)
Calling recurse(1)

Output

Step-by-Step Execution

Examples of Recursive Functions

Factorial of a Number

Example

Output

def factorial(n):
 if n == 0 or n == 1: # Base case
 return 1
 else: # Recursive case
 return n * factorial(n - 1)

print(factorial(5)) # Output: 120

120

Pankaj Chouhan
www.codeswithpankaj.com

Function Call Computation

factorial(5) 5 * factorial(4)

factorial(4) 4 * factorial(3)

factorial(3) 3 * factorial(2)

factorial(2) 2 * factorial(1)

factorial(1) Base Case → Returns 1

Function Call Returns

factorial(1) 1

factorial(2) 2 * 1 = 2

factorial(3) 3 * 2 = 6

factorial(4) 4 * 6 = 24

factorial(5) 5 * 24 = 120

Function Calls (Going Down the Stack)

Each function call breaks the
problem into a smaller one:

Function Returns (Unwinding the Stack)

Now, the recursive calls
return their values:

Thus, factorial(5) returns 120.

def factorial(n):
 if n == 0 or n == 1: # Base case
 return 1
 else: # Recursive case
 return n * factorial(n - 1)

print(factorial(5)) # Output: 120

Step-by-Step Execution

Pankaj Chouhan
www.codeswithpankaj.com

