
Python Inheritance
Inheritance is one of the fundamental concepts of Object-Oriented
Programming (OOP) in Python. It allows a class to inherit attributes and
methods from another class, promoting code reusability and hierarchy.

www.codeswithpankaj.com

Parent class

Child class

What is Inheritance
Inheritance is a mechanism where one class derives properties and
behaviors (methods) from another class.

Base class / Superclass
The class whose properties are inherited.

Derived class / Subclass
The class that inherits from another class

www.codeswithpankaj.com

Why Use Inheritance ?

Code Reusability :

 Avoids duplication of code.

Improves Maintainability :

 Changes in the parent class reflect in the child class.

Encapsulation :

 Allows you to structure your code in a hierarchical way

www.codeswithpankaj.com

Types of Inheritance

Single Inheritance

Multiple Inheritance

Multilevel Inheritance

Hierarchical Inheritance

Hybrid Inheritance

www.codeswithpankaj.com

www.codeswithpankaj.com

Example

A child class inherits from a single
parent class.

Single Inheritance

Parent Class

Child Class

class Parent:

 def parent_method(self):

 return "This is parent class"

class Child(Parent):

 def child_method(self):

 return "This is child class"

Usage

child = Child()

print(child.parent_method())

Outputs: This is parent class

print(child.child_method())

 # Outputs: This is child class

Child class

Father 1 class Mother 2 class

Multiple Inheritance
In multiple inheritance, a child class
inherits from more than one parent
class.

class Father:
 def father_method(self):
 return "Father's trait"

class Mother:
 def mother_method(self):
 return "Mother's trait"

class Child(Father, Mother):
 def child_method(self):
 return "Child's trait"

Usage
child = Child()
print(child.father_method())
Outputs: Father's trait
print(child.mother_method())
Outputs: Mother's traitwww.codeswithpankaj.com

Example

Child class

Grandparent class

Parent class

www.codeswithpankaj.com

Example

class Grandparent:
 def grandparent_method(self):
 return "Grandparent's method"

class Parent(Grandparent):
 def parent_method(self):
 return "Parent's method"

class Child(Parent):
 def child_method(self):
 return "Child's method"

Usage
child = Child()
print(child.grandparent_method())
Outputs: Grandparent's method
print(child.parent_method())
Outputs: Parent's method

Multilevel Inheritance
In multilevel inheritance, a child class
inherits from a parent class, and another
child class inherits from that child class.

Animal class

Dog class Cat class

www.codeswithpankaj.com

Example

class Animal:
 def speak(self):
 return "Animal makes sound"

class Dog(Animal):
 def speak(self):
 return "Dog barks"

class Cat(Animal):
 def speak(self):
 return "Cat meows"

Usage
dog = Dog()
cat = Cat()
print(dog.speak()) # Outputs: Dog barks
print(cat.speak()) # Outputs: Cat meows

Hierarchical Inheritance
In hierarchical inheritance, multiple child
classes inherit from a single parent class.

School class

Student class Teacher class

StudentTeacher class

www.codeswithpankaj.com

Example

class School:
 def school_name(self):
 return "ABC School"

class Student(School):
 def student_info(self):
 return "Student class"

class Teacher(School):
 def teacher_info(self):
 return "Teacher class"

class StudentTeacher(Student, Teacher):
 def student_teacher_info(self):
 return "Student Teacher class"

Usage
st = StudentTeacher()
print(st.school_name()) # Outputs: ABC School
print(st.student_info()) # Outputs: Student
class
print(st.teacher_info()) # Outputs: Teacher class

Hybrid Inheritance
Hybrid inheritance is a combination of
two or more types of inheritance.

Data Abstraction

www.codeswithpankaj.com

Data abstraction is a concept in object-oriented programming that
hides unnecessary details from the user and only shows the essential
features of an object. It helps in reducing complexity and increasing
code readability.

How Does Abstraction Work ?
In Python, abstraction is achieved using abstract classes and abstract methods.

An abstract class is a class that cannot be instantiated (you cannot create an

object of it).

It contains abstract methods (methods without implementation) that must be

implemented in the child class.

www.codeswithpankaj.com

Think of data abstraction like a TV remote
control. You just need to know which
buttons to press, but you don't need to
know how it works inside!

www.codeswithpankaj.com

Example

class MobilePhone:
 def __init__(self):
 self.__battery_level = 100
 self.__is_on = False

 def switch_on(self):
 self.__is_on = True
 print("Phone is switched ON")

 def switch_off(self):
 self.__is_on = False
 print("Phone is switched OFF")

 def check_battery(self):
 return f"Battery level: {self.__battery_level}%"

Using the phone
my_phone = MobilePhone()
my_phone.switch_on()
Output: Phone is switched ON
print(my_phone.check_battery())
Output: Battery level: 100%

Example using a Mobile Phone

Think of it this way :
When you use your real mobile phone, you just

press the power button

You don't need to know how the battery works

inside

You just need to know how to check battery level

This is exactly what abstraction does :
Hides complicated stuff inside (using __)1.

Gives you simple methods to use (like switch_on())2.

Protects the data from accidental changes3.

Makes the code easier to use4.

www.codeswithpankaj.com

https://github.com/Pankaj-Str/Complete-Python-Mastery/tree/main/23%20Day%20abstract

Polymorphism

www.codeswithpankaj.com

Polymorphism means "many forms" in Greek. In Python, polymorphism
allows objects of different classes to be treated as objects of a common
class. It helps in writing flexible and reusable code.

Types of Polymorphism in Python

Method Overriding (Runtime Polymorphism)1.

Method Overloading (Python does not support true method overloading but

can be achieved using default arguments)

2.

Operator Overloading3.

www.codeswithpankaj.com

Dog

Cat

make_sound

Animal

make_sound

polymorphism
animals = [Dog(), Cat()]

Method Overriding
(Runtime Polymorphism)

Example

class Animal:
 def make_sound(self):
 print("Animal makes a sound")

class Dog(Animal):
 def make_sound(self):
 # Overriding parent method
 print("Dog barks")

class Cat(Animal):
 def make_sound(self):
 # Overriding parent method
 print("Cat meows")

Using polymorphism
animals = [Dog(), Cat()]
for animal in animals:
 animal.make_sound()

Output:
Dog barks
Cat meows

When a child class provides a specific
implementation of a method that is already
defined in its parent class.

make_sound

www.codeswithpankaj.com

Method Overloading
(Not Directly Supported in Python)

 Python does not support method
overloading like Java/C++, but it can
be done using default arguments.

Example

class MathOperations:
 def add(self, a, b, c=0):
 # Default argument c
 return a + b + c

obj = MathOperations()
print(obj.add(2, 3))
Output: 5
print(obj.add(2, 3, 4))
Output: 9

www.codeswithpankaj.com

Operator Overloading

Python allows operators

like +, -, * to work differently

for different data types by

defining special methods like

__add__(),

__sub__(), etc.

Example

class Number:
 def __init__(self, value):
 self.value = value

 def __add__(self, other):
 # Overloading '+' operator
 return Number(self.value +
other.value)

num1 = Number(5)
num2 = Number(10)
result = num1 + num2
 # Calls __add__() method
print(result.value)
Output: 15

www.codeswithpankaj.com

✅ Polymorphism
allows the same method name to have different behaviors.

✅ Method overriding

lets child classes redefine a parent class method.

✅ Method overloading
can be simulated using default arguments.

✅ Operator overloading
lets us use operators with custom classes.

www.codeswithpankaj.com

https://github.com/Pankaj-Str/Complete-Python-Mastery/tree/main/25%20Day%20Polymorphism

