Web Scraping in Python

www.codeswithpankaj.com

What is Web Scraping ?

Web scraping is a technique to extract information from websites. It is used to
collect data from web pages automatically.

Libraries for Web Scraping

e Requests : Fetches web pages.
e BeautifulSoup : Extracts data from HTML.

Parbey Chockos

www.codeswithpankaj.com

Prerequisites

Run the following

Install Required Libraries (<o

Ipip install requests beautifulsoup4
%pip install requests beautifulsoup4

Import Required Libraries

Import requests
from bs4 import BeautifulSoup

Parbey Chockos

www.codeswithpankaj.com

Step by step. We will

™ Fetch a webpage using requests
™ Parse and extract data using BeautifulSoup

M Extract specific information like blog titles and links

¥ Save data to a CSV file

Parbey Chockos

www.codeswithpankaj.com

Step 1: Install Required Libraries

{ pip install requests beautifulsoup4 Ixml pandas }

e requests » To fetch the website HTML

e beautifulsoup4 - To parse and extract data from the HTML

e xml- To improve parsing performance

e pandas - To save the data in a structured format

Parbey Chockos

www.codeswithpankaj.com

Step 2: Fetch the Website HTML

Let's send a request to www.codeswithpankaj.com and retrieve the page content.

import requests

url = "https://www.codeswithpankaj.com/"
headers ={
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64)" Explanation .

} We use requests.get(url) to fetch the webpage.

We add a User-Agent header to prevent blocking.

If the request is successful (status_code == 200),
we print a portion of the HTML.

response = requests.get(url, headers=headers)

Check if the request was successful
if response.status_code == 200:

print("Page fetched successfully!")

print(response.text[:500]) # Print first 500 characters of the HTML
else:

print(f"Failed to fetch page. Status code: {response.status_code}")

Parbey Chockos

www.codeswithpankaj.com

http://www.codeswithpankaj.com/

Step 3: Parse the HTML with BeautifulSoup

Once we get the page content, we parse it using BeautifulSoup.

from bs4 import BeautifulSoup

Explanation:
soup = BeautifulSoup(response.text, "html.parser") We pass the HTML content to BeautifulSoup for parsing.
soup.title.string extracts the webpage title.

Print the page title
print("Page Title:", soup.title.string)

Parbey Chockos

www.codeswithpankaj.com

Step 4: Extract Blog Titles & Links

Now, let’s extract the latest blog post titles and their links from the homepage.

Find all blog post titles and links

articles = soup.find_all("h2", class_="post-title") Explanation :

soup.find_all("h2", class_="post-title")

for article in articles: finds all <h2> elemethS with the Cla.ss post—titl?.
: : : We extract the blog title and link using .text.strip()
title = article.text.strip() and .al"href

ink = article.a["href"]
orint(f"Title: {title}")
orint(f"Link: {link}\n")

Parbey Chockos

www.codeswithpankaj.com

Step 5: Save Data to CSV

Let’s store the extracted data in a CSV file.

Import csv

Open CSV file to save data
with open("blog_posts.csv", "w", newline="", encoding="utf-8") as file:

writer = csv.writer(file) Explanation:

writer.writerow(["Title", "Link"]) # Column headers We open a CSV file in write mode.

We write column headers: "Title", "Link".
Loop through extracted articles We loop through the extracted data
for article in articles: and store it in the file.

title = article.text.strip()
link = article.a["href"]
writer.writerow([title, link])

print("Data saved to blog_posts.csv")

Parbey Chockos

www.codeswithpankaj.com

Step 6: Handling Pagination (Multiple Pages)

If the website has multiple pages, we can scrape all pages by looping through them.

page=1
all_posts =]

while True:
url = f"https://www.codeswithpankaj.com/page/{page}/"
response = requests.get(url, headers=headers)

if response.status_code !=200:
break # Stop if no more pages

soup = BeautifulSoup(response.text, "html.parser")
articles = soup.find_all("h2", class_="post-title")

if not articles:
break # Stop if no more blog posts

for article in articles:
title = article.text.strip()
link = article.a["href"]
all_posts.append([title, link])

page +=1

Save to CSV

with open("all_blog_posts.csv", "w", newline="", encoding="utf-8") as file:
writer = csv.writer(file)
writer.writerow(["Title", "Link"])
writer.writerows(all_posts)

W‘@’@mped {len(all_posts)} blog posts and saved to all_blog_posts.csv")
ithpankaj.com

/2

WWW.C

Explanation:
We loop through pages (/page/1/, /page/2/, etc.).
If no articles are found, we stop scraping.
We save all posts to all_blog_posts.csv.

Step 7: Avoid Getting Blocked

Websites may block scrapers if they detect too many requests. Here’s how to avoid that:

Import random

iImport time

. user_agents =
Import random -5 [

"Mozilla/5.0 (Windows NT 10.0; Win64; x64)",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7)",

time.sleep(random.randint(2, 5)) "Mozilla/5.0 (X11; Ubuntu; Linux x86_64)"

Wait 2-5 seconds before the next request l

headers = {"User-Agent": random.choice(user_agents)}

Use Random Delays

Pourbey Clanips

www.codeswithpankaj.com

Rotate User-Agents

Final Thoughts

4% Congratulations! You’ve successfully scraped www.codeswithpankaj.com.

™ Fetched the webpage

™ Extracted blog titles & links
™ Saved data to a CSV file

™ Scraped multiple pages

™ Avoided getting blocked

iy Chole

www.codeswithpankaj.com

https://github.com/Pankaj-Str/Complete-Python-Mastery/tree/main/58%20Day%20Web%20Scraping

