
Web Scraping in Python

Pankaj Chouhan
www.codeswithpankaj.com

What is Web Scraping ?

Web scraping is a technique to extract information from websites. It is used to
collect data from web pages automatically.

Libraries for Web Scraping

Requests : Fetches web pages.
BeautifulSoup : Extracts data from HTML.

Pankaj Chouhan
www.codeswithpankaj.com

Install Required Libraries

 !pip install requests beautifulsoup4

Run the following
command to install

them

Prerequisites

Import Required Libraries

import requests
from bs4 import BeautifulSoup

%pip install requests beautifulsoup4

Pankaj Chouhan
www.codeswithpankaj.com

✅ Fetch a webpage using requests

✅ Parse and extract data using BeautifulSoup

✅ Extract specific information like blog titles and links

✅ Save data to a CSV file

Step by step. We will

Pankaj Chouhan
www.codeswithpankaj.com

requests → To fetch the website HTML

beautifulsoup4 → To parse and extract data from the HTML

lxml → To improve parsing performance

pandas → To save the data in a structured format

Step 1: Install Required Libraries

pip install requests beautifulsoup4 lxml pandas

Pankaj Chouhan
www.codeswithpankaj.com

import requests

url = "https://www.codeswithpankaj.com/"
headers = {
 "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64)"
}

response = requests.get(url, headers=headers)

Check if the request was successful
if response.status_code == 200:
 print("Page fetched successfully!")
 print(response.text[:500]) # Print first 500 characters of the HTML
else:
 print(f"Failed to fetch page. Status code: {response.status_code}")

Step 2: Fetch the Website HTML
Let's send a request to www.codeswithpankaj.com and retrieve the page content.

Explanation :
✔️ We use requests.get(url) to fetch the webpage.
✔️ We add a User-Agent header to prevent blocking.
✔️ If the request is successful (status_code == 200),
 we print a portion of the HTML.

Pankaj Chouhan
www.codeswithpankaj.com

http://www.codeswithpankaj.com/

from bs4 import BeautifulSoup

soup = BeautifulSoup(response.text, "html.parser")

Print the page title
print("Page Title:", soup.title.string)

Step 3: Parse the HTML with BeautifulSoup
Once we get the page content, we parse it using BeautifulSoup.

Explanation :
✔️ We pass the HTML content to BeautifulSoup for parsing.
✔️ soup.title.string extracts the webpage title.

Pankaj Chouhan
www.codeswithpankaj.com

Find all blog post titles and links
articles = soup.find_all("h2", class_="post-title")

for article in articles:
 title = article.text.strip()
 link = article.a["href"]
 print(f"Title: {title}")
 print(f"Link: {link}\n")

Step 4: Extract Blog Titles & Links
Now, let’s extract the latest blog post titles and their links from the homepage.

Explanation :
✔️ soup.find_all("h2", class_="post-title")
 finds all <h2> elements with the class post-title.
✔️ We extract the blog title and link using .text.strip()
 and .a["href"].

Pankaj Chouhan
www.codeswithpankaj.com

import csv

Open CSV file to save data
with open("blog_posts.csv", "w", newline="", encoding="utf-8") as file:
 writer = csv.writer(file)
 writer.writerow(["Title", "Link"]) # Column headers

 # Loop through extracted articles
 for article in articles:
 title = article.text.strip()
 link = article.a["href"]
 writer.writerow([title, link])

print("Data saved to blog_posts.csv")

Step 5: Save Data to CSV
Let’s store the extracted data in a CSV file.

Explanation :
✔️ We open a CSV file in write mode.
✔️ We write column headers: "Title", "Link".
✔️ We loop through the extracted data
 and store it in the file.

Pankaj Chouhan
www.codeswithpankaj.com

page = 1
all_posts = []

while True:
 url = f"https://www.codeswithpankaj.com/page/{page}/"
 response = requests.get(url, headers=headers)

 if response.status_code != 200:
 break # Stop if no more pages

 soup = BeautifulSoup(response.text, "html.parser")
 articles = soup.find_all("h2", class_="post-title")

 if not articles:
 break # Stop if no more blog posts

 for article in articles:
 title = article.text.strip()
 link = article.a["href"]
 all_posts.append([title, link])

 page += 1

Save to CSV
with open("all_blog_posts.csv", "w", newline="", encoding="utf-8") as file:
 writer = csv.writer(file)
 writer.writerow(["Title", "Link"])
 writer.writerows(all_posts)

print(f"Scraped {len(all_posts)} blog posts and saved to all_blog_posts.csv")

Step 6: Handling Pagination (Multiple Pages)
If the website has multiple pages, we can scrape all pages by looping through them.

Explanation :
✔️ We loop through pages (/page/1/, /page/2/, etc.).
✔️ If no articles are found, we stop scraping.
✔️ We save all posts to all_blog_posts.csv.

Pankaj Chouhan
www.codeswithpankaj.com

import random

user_agents = [
 "Mozilla/5.0 (Windows NT 10.0; Win64; x64)",
 "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7)",
 "Mozilla/5.0 (X11; Ubuntu; Linux x86_64)"
]

headers = {"User-Agent": random.choice(user_agents)}

Step 7: Avoid Getting Blocked
Websites may block scrapers if they detect too many requests. Here’s how to avoid that:

Use Random Delays

import time
import random

time.sleep(random.randint(2, 5))
Wait 2-5 seconds before the next request

Rotate User-Agents

Pankaj Chouhan
www.codeswithpankaj.com

🎉 Congratulations! You’ve successfully scraped www.codeswithpankaj.com.

✅ Fetched the webpage

✅ Extracted blog titles & links

✅ Saved data to a CSV file

✅ Scraped multiple pages

✅ Avoided getting blocked

More projects

Final Thoughts

Pankaj Chouhan
www.codeswithpankaj.com

https://github.com/Pankaj-Str/Complete-Python-Mastery/tree/main/58%20Day%20Web%20Scraping

