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What is Web Scraping ?

Web scraping is a technique to extract information from websites. It is used to
collect data from web pages automatically.

Libraries for Web Scraping

Requests : Fetches web pages.
BeautifulSoup : Extracts data from HTML.
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Install Required Libraries

 !pip install requests beautifulsoup4

Run the following
command to install

them

Prerequisites

Import Required Libraries

import requests
from bs4 import BeautifulSoup

%pip install requests beautifulsoup4
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✅ Fetch a webpage using requests

✅ Parse and extract data using BeautifulSoup

✅ Extract specific information like blog titles and links

✅ Save data to a CSV file

Step by step. We will
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requests → To fetch the website HTML

beautifulsoup4 → To parse and extract data from the HTML

lxml → To improve parsing performance

pandas → To save the data in a structured format

Step 1: Install Required Libraries

pip install requests beautifulsoup4 lxml pandas
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import requests

url = "https://www.codeswithpankaj.com/"
headers = {
    "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64)"
}

response = requests.get(url, headers=headers)

# Check if the request was successful
if response.status_code == 200:
    print("Page fetched successfully!")
    print(response.text[:500])  # Print first 500 characters of the HTML
else:
    print(f"Failed to fetch page. Status code: {response.status_code}")

Step 2: Fetch the Website HTML
Let's send a request to www.codeswithpankaj.com and retrieve the page content.

Explanation :
✔️ We use requests.get(url) to fetch the webpage.
✔️ We add a User-Agent header to prevent blocking.
✔️ If the request is successful (status_code == 200),
       we print a portion of the HTML.
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from bs4 import BeautifulSoup

soup = BeautifulSoup(response.text, "html.parser")

# Print the page title
print("Page Title:", soup.title.string)

Step 3: Parse the HTML with BeautifulSoup
Once we get the page content, we parse it using BeautifulSoup.

Explanation :
✔️ We pass the HTML content to BeautifulSoup for parsing.
✔️ soup.title.string extracts the webpage title.
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# Find all blog post titles and links
articles = soup.find_all("h2", class_="post-title")

for article in articles:
    title = article.text.strip()
    link = article.a["href"]
    print(f"Title: {title}")
    print(f"Link: {link}\n")

Step 4: Extract Blog Titles & Links
Now, let’s extract the latest blog post titles and their links from the homepage.

Explanation :
✔️ soup.find_all("h2", class_="post-title") 
      finds all <h2> elements with the class post-title.
✔️ We extract the blog title and link using .text.strip() 
       and .a["href"].
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import csv

# Open CSV file to save data
with open("blog_posts.csv", "w", newline="", encoding="utf-8") as file:
    writer = csv.writer(file)
    writer.writerow(["Title", "Link"])  # Column headers
    
    # Loop through extracted articles
    for article in articles:
        title = article.text.strip()
        link = article.a["href"]
        writer.writerow([title, link])

print("Data saved to blog_posts.csv")

Step 5: Save Data to CSV
Let’s store the extracted data in a CSV file.

Explanation :
✔️ We open a CSV file in write mode.
✔️ We write column headers: "Title", "Link".
✔️ We loop through the extracted data 
       and store it in the file.
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page = 1
all_posts = []

while True:
    url = f"https://www.codeswithpankaj.com/page/{page}/"
    response = requests.get(url, headers=headers)
    
    if response.status_code != 200:
        break  # Stop if no more pages

    soup = BeautifulSoup(response.text, "html.parser")
    articles = soup.find_all("h2", class_="post-title")

    if not articles:
        break  # Stop if no more blog posts

    for article in articles:
        title = article.text.strip()
        link = article.a["href"]
        all_posts.append([title, link])

    page += 1

# Save to CSV
with open("all_blog_posts.csv", "w", newline="", encoding="utf-8") as file:
    writer = csv.writer(file)
    writer.writerow(["Title", "Link"])
    writer.writerows(all_posts)

print(f"Scraped {len(all_posts)} blog posts and saved to all_blog_posts.csv")

Step 6: Handling Pagination (Multiple Pages)
If the website has multiple pages, we can scrape all pages by looping through them.

Explanation :
✔️ We loop through pages (/page/1/, /page/2/, etc.).
✔️ If no articles are found, we stop scraping.
✔️ We save all posts to all_blog_posts.csv.
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import random

user_agents = [
    "Mozilla/5.0 (Windows NT 10.0; Win64; x64)",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7)",
    "Mozilla/5.0 (X11; Ubuntu; Linux x86_64)"
]

headers = {"User-Agent": random.choice(user_agents)}

Step 7: Avoid Getting Blocked
Websites may block scrapers if they detect too many requests. Here’s how to avoid that:

Use Random Delays

import time
import random

time.sleep(random.randint(2, 5))  
# Wait 2-5 seconds before the next request

Rotate User-Agents
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🎉 Congratulations! You’ve successfully scraped www.codeswithpankaj.com.

✅ Fetched the webpage

✅ Extracted blog titles & links

✅ Saved data to a CSV file

✅ Scraped multiple pages

✅ Avoided getting blocked

More projects

Final Thoughts
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